三项均值不等式的详细证法例题_三项均值不等式的详细证法-环球快看


(资料图)

1、a+b+c=(3∧√a)^3+(3∧√b)^3+(3∧√c)^3≥3(3∧√a)(3∧√b)(3∧√c),即:a+b+c≥3*3∧√abc先证两个数的情形;(a+b)/2>=√(ab). (1)(1)<=>(√a-√b)^2>=0(显然成立)再证四个数的情形;(a+b+c+d)/4>=(abcd)^(1/4) (2)反复应用(1)得(a+b+c+d)/4=[(a+b)/2+(c+d)/2]/2>=(√(ab)+√(cd))/2>=√[√(ab)√(cd)]=(abcd)^(1/4).最后证三个数的情形;(a+b+c)/3>=(abc)^(1/3).在(2)中取d=(a+b+c)/3,得(a+b+c+(a+b+c)/3)/4>=(abc(a+b+c)/3d)^(1/4) ,即(a+b+c)/3>=(abc(a+b+c)/3d)^(1/4),两边4次方,并约去(a+b+c)/3得[(a+b+c)/3]^3>=abc,两边开立方,得(a+b+c)/3>=(abc)^(1/3)。

本文到此分享完毕,希望对大家有所帮助。

关键词:

为你推荐

新股
市场
Copyright@  2015-2022 北方证券网版权所有  备案号: 京ICP备2021034106号-50   联系邮箱: 55 16 53 8@qq.com